Integrerend project systeemtheorie

21/01/2013, Monday, 9:00-12:00

1 (4+4+8+4=20)

Linearization

Consider the so-called Van der Pol system

$$\ddot{z}(t) - \mu (1 - z^2(t))\dot{z}(t) + z(t) = 0.$$

- (a) Write the system in the form of a nonlinear state-space system $(\dot{x} = f(x))$ by taking $x_1(t) = z(t)$ and $x_2(t) = \dot{z}(t)$.
- (b) Show that $x_1(t) = x_2(t) = 0$ is a solution of $\dot{x} = f(x)$.
- (c) Determine the linearized system.
- (d) For which values of μ is the linearized system asymptotically stable.

2 (15)

Routh criterion

Consider the linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -3 & -4 & -a \end{bmatrix} x$$

where a is real number. For which values of a is this system asymptotically stable?

$$3 (3+4+4+4+4+8+8=35)$$

Controllability and observability

Consider the linear system

$$\dot{x} = \begin{bmatrix} 2 & 0 \\ 1 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u \qquad y = \begin{bmatrix} 0 & 1 \end{bmatrix} x.$$

Explain your answers to the following questions:

- (a) Is it stable?
- (b) Is it controllable?
- (c) Is it observable?
- (d) Is it stabilizable?
- (e) Is it detectable?
- (f) Does there exist an observer of the form $\dot{\hat{x}} = P\hat{x} + Qu + Ry$?
- \cdot (g) Does there exist a stabilizing dynamic compensator (from y to u)? If yes, determine such a compensator.

Consider the linear systems

$$\dot{x}(t) = Ax(t) \quad x(0) = x_0$$
$$y(t) = Cx(t)$$

where $x \in \mathbb{R}^n$ is the state and $y \in \mathbb{R}^m$ is the output. Let $x(t, x_0)$ denote the state trajectory of the system corresponding to the initial condition x_0 . Define

$$W = \begin{bmatrix} C \\ CA \\ \vdots \\ CA^{n-1} \end{bmatrix}$$

and

$$\mathcal{V} = \{x_0 \mid \lim_{t \to \infty} x(t, x_0) = 0\}.$$

Show that

- (a) V is a subspace.
- (b) V is A-invariant.
- (c) if $\ker W \subseteq \mathcal{V}$ then the system is detectable.

10 pts gratis.